Размерность фрактала

Страница 2

Для отрезка прямой линии длиной L (состоящего из бесконечного числа точек) минимальное число N(l) одномерных отрезков размера l, с помощью которых можно покрыть данный отрезок целиком, равно, очевидно, N(l) = L/l. В этом случае, согласно формуле (17) (или (16)), фрактальная размерность D = 1, т.е. совпадает с Евклидовой размерностью отрезка прямой d = 1. Для области площадью S гладкой двумерной поверхности число необходимых для ее покрытия квадратиков N(l) = S/l2 (при достаточно малых l), поэтому фрактальная размерность гладкой поверхности D = 2. И наконец, для покрытия некоторого конечного объема V необходимо N(l) = V/l3 кубиков с ребром l. Следовательно, фрактальная размерность этого множества D = 3.

Разберем теперь некоторые классические примеры регулярных фракталов, которые обладают свойством идеального самоподобия. Их покрытие можно осуществлять элементами, из которых состоит данный фрактал. В этом случае имеет место упрощенный вариант формулы (17) для определения фрактальной размерности. Пусть на некотором этапе покрытия фрактала нам пришлось использовать, как минимум, N(l) таких элементов характерного размера l, а на другом N(l') элементов размера l'. Тогда величина фрактальной размерности D может быть вычислена по формуле:

(18)

Очевидно, эту формулу можно переписать в виде:

(19)

что является следствием выражения (16).

Страницы: 1 2 


Похожие статьи:

Пути и средства формирования знаний о комнатных растениях у детей дошкольного возраста
Процесс формирования знаний происходит как в стихийной форме, так и в процессе целенаправленного обучения. Обучение -процесс целенаправленной передачи исторического опыта, организации формирования знаний, умений и навыков. В обучении используются наглядные, словесные, игровые, практические методы. Методы обучения рассматриваются как способы работы педагога с детьми с целью приобретения последними ...

Геометрические фракталы
Фракталы этого класса самые наглядные. В двухмерном случае их получают с помощью некоторой ломаной (или поверхности в трехмерном случае), называемой генератором. За один шаг алгоритма каждый из отрезков, составляющих ломаную, заменяется на ломаную-генератор, в соответствующем масштабе. В результате бесконечного повторения этой процедуры, получается геометрический фрактал. Рис. 7. Построение триад ...

Главные разделы

Copyright © 2025 - All Rights Reserved - www.smarteducator.ru