Бродбент и Хаммерсли рассмотрели общую ситуацию, возникающую при случайном распространении жидкости через среду, когда абстрактные термины "жидкость" и "среда" могут быть интерпретированы в соответствии с физическим смыслом задачи. В обычных процессах диффузии случайность есть не что иное, как случайные блуждания частиц жидкости. Примером могут служить нерегулярное тепловое движение молекул в жидкости. Другой пример случайности, "вмороженной" в среду, Хаммерсли назвал протеканием, или перколяционным процессом, поскольку жидкость в среде ведет себя, как вода в перколяторе (кофеварке).
Процессы диффузии, такие, как распространение растворяемого вещества в растворителе или движение электронов в полупроводнике, ныне хорошо поняты.
Диффундирующая частица может достигать любой точки в среде. Иначе обстоит дело в случае протекания. Наиболее характерной особенностью перколяционных процессов является существование порога протекания, ниже которого процесс распространения жидкости ограничен конечной областью среды. В качестве примера Бродбент и Хаммерсли рассмотрели распространение заболевания деревьев [4], при котором те сбрасывают листву и перестают расти, в саду, где деревья посажены в узлах квадратной решетки. Если расстояния между деревьями возрастают настолько, что вероятность заражения соседнего дерева падает ниже критического значения рс, то заболевание по саду не распространяется. Порогом протекания для этой задачи служит вероятность рс = 0,59275 для протекания от узла к узлу квадратной решетки. Другой пример-просачивание воды или радиоактивных отходов в трещины и разломы горной породы. Вопрос заключается в том, останется ли вода локализованной в каком-то объеме или будет распространяться все дальше и дальше. И в этой задаче можно ожидать, что существует критический порог концентрации трещин. Величину порога протекания можно определить с помощью численного моделирования. Аналогичной проблемой, имеющей огромный практический интерес, является распространение воды, вытесняющей нефть в пористых породах. В этом случае распространяющийся фронт жидкости (воды) может запереть нефть в некоторой области ("ловушке"), что приводит, как показали Уилкинсон и Виллемсен, к инвазивной перколяции. Случайность, связанная с инвазией (вторжением) вытесняющей жидкости, зависит, помимо прочего, от динамики образования ловушек. Идеи и понятия теории протекания применимы и к распространению и взаимосвязи трещин и разломов в горных породах и в материалах, используемых в технике.
Во многих приложениях не существует резкого различия между перколяционными процессами и диффузией. Важным случаем является диффузия от источника. Возникающий фронт диффузии имеет геометрическую структуру, тесно связанную с фрактальной геометрией протекания. На это впервые обратили внимание Саповал и др.
Задача о протекании допускает очень простое описание и приводит к множеству интереснейших фрактальных структур. Основные понятия теории протекания мы проиллюстрируем на примере двумерного протекания на квадратной решетке.
Похожие статьи:
Развитие познавательных процессов детей 6-10 лет средствами физического воспитания
Гармоничное развитие ребенка является важнейшей предпосылкой формирования духовной и физической сфер взрослого человека . Младший школьный возраст - один из благоприятных периодов для развития психических процессов. Большинство ученых убеждены в огромной роли данного возрастного отрезка в формировании и развитии познавательных процессов. Этой проблеме посвящено достаточное количество исследований ...
Организация и проведение опытов с объектами неживой природы в старшей
группе дошкольного учреждения
В ходе своей работы я пришла к выводу: чем больше опыта тем больше ребёнок способен мыслить и рассуждать. Чтобы дать знание детям и наполнить их головы интересным содержанием мы с детьми проводим различные опыты: с песком, воздухом, водой, с тенью, с магнитом. В переводе с греческого слово “атмосфера” означает “воздух вокруг Земли”. Воздух: как можно его увидеть и почувствовать. Дети затрудняются ...