2. Вспомогательная система имеет решения σ1 = 5, σ2 = 4 Окончательный ответ: (1,4) или (4,1)
3. Вспомогательная система имеет решения σ1 = 4, σ2 = 3 или σ1 = -5, σ2 = 12 Окончательный ответ: (1,3) или (3,1)
Занятие 4
Цель: Научить детей находить подходящие замены для приведения уравнений и систем уравнений к симметрическому виду, и решать такие уравнения и системы.
План занятия:1. Введение вспомогательных неизвестных для приведения систем уравнений к симметрическому виду.2. Введение вспомогательных неизвестных для решения уравнений.3. Домашнее задание.
Приведение систем уравнений к симметрическому виду
На предыдущем занятии мы с вами решали симметрические системы уравнений. А что делать, если система не является симметрической, но очень на нее похожа? Сделать замену переменных так, чтобы система стала симметрической.
Пример 1:
Эта система не является симметрической, но если произвести замену z = -y, то она станет таковой
Пример 2. Привести систему к симметрическому виду:
В данном случае замена не так очевидна. Нужно заметить, что 81x4 = (3x)4, и16y4 = (-2y)4. Заменяя 3x на u, -2y на v, получаем нужную систему:
Задание. Привести системы к симметрическому виду:
1. 2.
3.
4.
5. 6.
Ответы:
1. y = -z
2. = u,
= v
3. = u,
= -v
4. = u,
= v
5. x1/4 = u, y1/5 = v
6. x1/3 = u, y1/3 = v
2. Решение уравнений
Иногда введением вспомогательных неизвестных можно решать достаточно сложные уравнения с одной переменной, сведя его к симметрической системе с 2-мя неизвестными.
Пример 1. Решить иррациональное уравнение:
+
= 5
Решение
Положим = y и
= z, тогда рассматриваемое уравнение примет вид y + z = 5. Кроме того, x4 + z4 = x + (97 - x) = 97. Таким образом, мы получили систему уравнений
Эта система уравнений – симметрическая, делаем стандартную замену σ1 = y + z, σ2 = yz, приходим к системе
Решая ее, и возвращаясь к y и z, получаем:
y + z = 5, yz =6 или y + z = 5, yz = 44Вторая система не дает решений, а из первой получаем
y = 2, z = 3 или y = 3 , z = 2, откуда уже можно найти Ответ: x = 16 или x = 81.
Пример 2. Свести уравнение к решению симметрической системы и решить его:
Похожие статьи:
Физиологические и
психологические особенности младших школьников и их влияние на учебную
деятельность
Младшим школьным возрастом принято считать возраст детей примерно от 7 до 10-11 лет, что соответствует годам обучения в начальных классах. Это возраст относительно спокойного и равномерного физического развития. Увеличение роста и веса, выносливости, жизненной ёмкости лёгких идёт довольно равномерно и пропорционально. Костная система младшего школьника ещё находится в стадии формирования – окосте ...
Характеристика рефлексивной деятельности учителя
В педагогической деятельности рефлексия является таким же необходимым компонентом, как и в любой человеческой деятельности. Б.З.Вульфов и В.Н.Харькин формулируют следующим образом определения наиболее значимых для нас феноменов: «Если рефлексия – цепочка внутренних сомнений, обсуждений с собой, вызванных возникающими в жизни вопросами, недоумениями, трудностями, поиск вариантов ответа на происход ...